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ABS TEAC T

The classical problem of lateral buckling of cantilever beams with

transverse end-load is re-examined, as an example of a problem fully

governed by the intrinstc equations of Kirchhoff ’s cu rved beam theory.

— It Li shown that a ~~~5able non-dimensionalization of the differential

equations of the problem leads to a straightfo rward perturbation solution ,

with leading and second-order terms of the expansion having well-defined

differences in physical significance. — The equations of a recent exten-

sion of Kirchhoff ’. theory, which take account of transverse shear defo r-

mation , ar e used for the purpose of obtaining a numerical resul t for th ,,,~~~

Influenc e of shear deformabilit y on the late ral buckling load.
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ON LATERAL BUCKLING OF END-LOADED CANTILEVER BEAMSt

By E. Rei ssne r

Introduction. The histo ry of the problem of late ral buckling of transversely

loaded beams begins with two fundamenta l pape rs , written Independently and nearly

simulta neously, by A. G.M. Michell I i ]  and L. Prandtl [2). Michell as ‘well as

Prandtl used appropriate geometrical ad hoc considerations to arrive at a correct

physical understanding of the problem and at a buckling load formula which Is

correct , except for the analysis of ce rtain secondary effects which are of no

significance In almost all practical circumstances.

Five years after the publication of Michell’. and Prandtl ’s work it was

observed by 11. R e iRs ncr  ( 3 j  that  the equations of the problem of late ra l buc kling

could be deduced in a straig htforward manner , without ad hoc considerations , by

an app ropriate specialization of K irchhof f ’ s general theo ry of space-curved beams ,

with the analysis of the ( two ) secondary effects , being automatically included In

the analysis of the problem. Beyond making the above Important advance in the

analysis of the late ral buckling problem , H. Reissner went on to reduce the

problem of the end-loaded cantilever beam to a bounda ry value problem for a

thi rd orde r linear diffe rential equation , and to a buckling load equation of the

fo rm c 3 P + c2P
2 

+ ... I. in arriving at the above result H. Reissner neglects

one of the two secondary effects and indicate, that he intends to give the numerical

consequences of his formula in a different place.

A report on work supported by the Office of Naval Research.
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Ten yea rs after the publication of H. R.etssne r ’e note , In 1914 , his

assistant M. K. Grobe r reconsiders the problem [41 “based on some calculations

which Mr. Reissner turned over to me for fur the r development .” The pri ncipal

result of Grobe r ’s work is the derivation of a th i rd-order  diffe rential equation

with full inclusion of secondary effects , and with a bucklin g for mula given by

the vanishing of a second order determinant , wit h each of the four term s in the

determinant a power series in the buckling load. Grobe r concludes his analys i s

with the statement that he will “as soon as possible evaluate some num erical

cases and compare the results with experiment.” Grobe r was killed in action

in World Wa r I, ve ry soon after completion of this pape r , and thue prevented

f rom carrying out his intentions .

Thereafte r the numbe r of publications on the problem of lateral buckling

increase, steadily. From among this literature two contributions should be

mentioned specifically. One of these Is a paper by K. Federhofe r [51, in

1931, which include, the numerical evaluation of H. Reissne r ’ s buckling

equation for the case of a narrow rectangular-cros s section beam (with  the

secondary effect amounting to 7.8 percen t for a width-depth ratio of 1/5).

The other is a recent paper by D.H. Hodges and D.A. Peters [7) which under-

takes to re-examine the problem once again ab Initto on the ba i’ii s of II. Reissne r ’s

ap~ roach. In the process of doing this the a u t h o r s  rederive Grober ’s general

third-order differential equation , unaware of this earlier contribution to the

subject. Howeve r, in addition , the authors  reconsider the problem of system -

a t ically determining first-orde r approximations for seconda ry effects .

They find, In what must be conside red an Impo r tant advance in the field of this
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problem , tha t a systematic f i rs t -order  analysis of both second-order effects

comes ou t to be actually simpler than the analysis In which one of the two

effects is neglected , with the basic thi rd-order dif ferential equation of the

p roblem now having an explicit f i r s t  in tegral , leaving the problem in the form

of a bounda ry value problem for a second-orde r differential equation , just as

for the case of the problem wi thout consideration of any secondary effects.

The main purposes of the present paper are the following. (1) We wish

to re-consider the problem on the basis of Kirchho ff’ s equations of equIlibrium

f o r  finitel y deforming rods in such a way that full advantage ii taken of the

fact tha t the boundary conditions of the problem allow a complete solution of

the equations of an intrinsic form of the theory, tha t Is of a fo rmulation of the

theory without  any rega rd to the form of strain displacement relations. (2) We

w i sh  to s how that a suita bl e nn ,i-tllrncnslonalizat ion of the equations of the

t heory ind icates the evident possibility of a straightfo rward perturba tIon expan-

sion, in such a way that the results of the theory without secondary effects

appea r as the leading term s in the expansion , with both secondary effect.

appea ring systematically in second and still higher-order terms. (3) We use

t he equat ions of a recentl y developed extension of Kirchhoff ’s equations ,

which takes account of axial extension and transve rse shea r deformation effects

[6J , for the pu rpose of dete rn i in i ng  the effect of transverse shear defo rmation

on the lateral buckling load of the cantilever beam.

Formulation of Problem. We write Klrchhoff ’s equati ons for finite

defo rmations of originally s traig ht beams in the form
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Pt - x 1P 1 - ~t2P2 + Pt = 0 , ( la)

P 1 + - + P1 = 0 , ( I b)

( I c )

+ ~ 1M 2 - ~t 2M 1 + rn~ = 0 , (Za)

+ X2Mt - x~Mz + P 1 + m 1 = 0 , (Zb)

M~ - X jMt +x
~
Mi + P 2 + m 2 = 0  . (Zc)

In these equations primes Indicate diffe rentiation with respect to an axial

coo rd inate x , P~, P 1 and p2 arc fort cs  a t i n g  n v~• r  ‘he ,‘ ro~ s H P v tj O f l  of t h e

beam , tangent and no rmal to the cente r line , with P 1 and P2 being in the

di rections of the princ ipal axes y 1 and y2 of the cross section , and w i t h  p~, 
~‘1

and p2 beIng the corresponding surface force intensities.  Furthermore ,

and M2 are cross sectional twisting and bending moments , with rn
~ m 1

and m2 being surface moment Intensities corresponding thereto , and with

X~, X
1 

and 
~~ 

being twisting and bendin g st rains which a re here taken to be

related to the twisting and bending moments by const itut ive equations of the form

M~ = D 1 k 1 M 2 = D 2~~2 . (3 * , b , c)

In what follows we restrict attention to the problem of a cantilever beam

which Is free of distributed surface load. , so that Pt p1 = p2 = 0 and m
~ =

m1 = m2 = 0, and which Is acted upon by a fo rce and by a moment at the unsup .

ported end of the beam . Of the various possibl e loading cond ition . which may

be subsumed under the abo ve descri ption we will be concerned specifica ll y wi th

the pro blem of a transverse end force P ori ented ~n a direction which coincides

78-~-O9 Ii OS8~.
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with the principal di rectlpn y 1 of the cross section of the undeformed beam.

It is evident that the problem as described I. of such nature that one possible

state , the unbuckled state , involves no more than the two forces p1, 
~~~~~ 

the

moment M 1 and th e bending strain x~ , with P2 = 0, M 2 = M~ = 0 and = = 0,

and with the associated buckling problem being the problem of dete rmining

the smallest value of P which allows the existence of alternate, buckled, states

wi th some or all of the quantities P~ , M2, M
~. *~

, 
~ 

nonvanishing.

Boundary condi tions for the system of differential equations (1) to (3)

which correspond to the prescribed loading condition may be fo rmulated as

follows.

We eviden tly have at the loaded end , x = 0, the conditions

M 1 (0) M2
(O) M

~
(O) 0 . (4a , b, c)

Since we do not know the orientation of the loaded end of the l eam, we cannot

say anything about the values of P1, P2 and P~ for x = 0. However , the condi-

tion that the direction of P remains the same, no matter what the orientation

of the loaded end cross section might be, In conjunction with the condition that

the supported end of the beam, x = L, I. assumed to be built-in, mean. that

we know the values of P1. P2 and for x L, as follows

P 1(L) - p P2 (L) - P1(L) - 0 . (5a , b, c)

We note that the nu mbe r of boundary conditions corresponds to the

num ber of first  orde r diffe rential equations for P1. P2, P~, M 1, M2 and Mt
which is obtained upon eliminating ~~~ and from equations (1) and (2) by

means of equations (3). We furthe r note specifically that the above fo rmulatIon

of the problems holds , withou t any reference to relations whIch exist between ‘~~~

I 
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the strain components t and whateve r description we might choose for trans-

lational and rotational displacement components of the elements of the beam.

In other words , our problem has been stated e n t i r e l y  wi th in  the f rame work

of the intrinsic equations of one-dimensional beam theory.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We begin by considering

the unbuckied state , with overba rs desi gna ti ng forces , moments and strains

of thi s state.

We have then , from equation. (1)

- *~ P~ = 0 , 

~~~~~ 

+ = o (6a , b)

and from equations (2) and (3),

M
1 + P1 = 0 , , (7a. b)

with boundary condition.

M 1(0) ~~ ‘ ‘ 0 . (Ma , h. C)

We obtain equations governing the onset of buckl ing, upon setting

l’
t ~~

)
t~~~

A
~~t , P1 P~ +~~P1 , M~ ~ + A M 1 , ,C~ =

~~~~ 
+~~~ic~ (9a-d)

and upon linearizing equations (I)  and (3) in terms of 
~
P
t. 

AP
1
, AM 1, Ax

1

and P2 . M
2 , Mt. *2 and x~ . Of the six equations obtained In this way only

three are needed , those following from equations ( Ia ) ,  (2*) and (Zc) to the form

P~ + + p1 0 , (lOa)

+ ~ 1M 2 - M 1x2 0 , (lob)

M~ - x 1M t + + P2 = 0 • (lOc)



The as~ociatrd boundary conditions are

M2(O) = M t (0) 0 , P2 (L) - 0 . ( h a , b, C)

Note tha t the singly underlined term s in (10) describe the effec t of initial

defo rmations on the process of buckling while the doubl y underlined term

desc r ibes the effect of finite deformation in the analysis of the initial state.

For practical applica tions both effects In the analysis of the given problem are

genera l l y negl ig ib le .  In the work  of H. Reissner (31 the effect of the ~ 1-te rms

is taken into at count and the effect of the Pt
_ te rm is explicitly neglected. In

the work of Hodges and Peters [7], it is observed tha t both effects are of the

same ord er of magnitude in term s of appropriate dimensionless parameter.

but that , numericall y, the effect of the Pt _term Is only about one-fifth the

effect of the x 1 -te rm s.

Non- Ditnen na 11z~ Uon a nd P ion Ex an. ion I or uatig~~~ j

We set in equations (6) to (8)

x = , P 1 - Pp , = PLm • (PL2/D 1)Pq , (12)

and we i ndicate different iat ion with respect to ~ by dots . With this the differen-

tial equations (6) and (7) may be written In the form

q - mp = 0 , p + (PL 2
/ D 1) 2

mq - 0 , m’ + p = 0 , (13a . b, c)

and the bounda r y condIt ion s (8) become

m(O) 0 , p( l )  1 , q( l )  I) . ( 14a, b. c)

We now consider

- PL2/D 1 (15)

as a small pa rameter and expand the solution of (13) and (14) In powers of 
~~

~: ::~ _ _ _ _ _ _ _ _



The result of the simple calculation , to the degree needed in what  follows , comes

out to be

(16)

where

p
0 

I , m0 = 4 , q~ 4(1 - ~
2) , (17)

and

~L~L 
~~

— m (18
8 4 8 ‘ l 8  12 40 ’

For what follows it I. important to note that the small parameter ?J l may

also be written in the form

PL2 /Dt D2

~/D — (19)

or , with

D D
L 

~~~~~~ ~~~~~~~~~~~~~~~ 
(20)

t

a.

~ 1 ~~~~~~~~~~~~~~ 

(2 1)

where , as is k nown from previous work , the value of a for which buckling occurs

Is of the order of magnitude unity.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We begin by

rew ritIng equations (10), in conjunction with equations (3), in the form

_ M _ M I) M
+ P1-s— = 0 . M - 1 - 

~~~
— M 1 -~~- = 0 , (22a , b)



+ - + P2 = 0 . (Z2c)

We next introduce into these the contents of equation (12),  and fu r ther-

more write

P2 = Pg(s) . M 2 = PLf 2 (C) , Mt = 
~~~~~~~~~~~~~~~ • (23)

with the choice of the fac tor PL2/D2 In the expression fo r Mt being of pa r t i cu la r

importance. With this eq uations (22) become

g + 0~~
p(C)f t + 17~q(E)f 2) = 0 , (24a)

- (1 - ,p2)m(~ )f 2 = 0 • (24b)

+ a~~i - ?p~)in(~)f~ + g = 0 , (24c)

with the bounda ry conditions for thi. system following from equations (4) and

(5) as

f
z

(0) = = 0 , g(l) = 0 , (25a , b c)

and with the coefficient functions p. q and m following from (16) to (20) as

p = 1 + a2,p~fl~p~ + ... , m -~ + O2
77277~

m + ... , q = 4 - 4C 2 
+ ... (26)

We specifically note from the appearance of equations (24) that , as

apparentl y fi rst observed by Hodges and Peters [7), there are altogethe r three

te rms which determine the effect of the small pa rameters 
~2 and on the

smallest possible nonvanishing value of ~ . We further note that it appea rs

likely tha t the third order eigenvalue problem (24) gnd (25) , wi th coefficient

functions given in accordance with (13) and (14) without any assumptions

-9-
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concern ing the smallness of t)~ and would offe r no particula r difficulties

In regard to a direct numerical solution. However, we will limit ourselves

he re to seeing in which way a dire ct solution, w ithout use of such computational

facilities, becomes possible upon explicit utilization of the assumptions 
~~ ~~ 

I

and ~~ 1.

Perturbation Exnansion for the Solution of the Cha racte ristic Value
- .

Problem. It I. clear from (24) to (26) that the functions g, f 1 and f2 may be

expanded in powers of the parameters  and We limit ourselve, here

to a determination of the zeroth and f i r s t  degree terms In these expansions.

A. long as we restrict attention to f irst  degree term s equations (24)

may be written in the simplified form

g 4- a2
[f + 4 f l t (1 - £

2
111 = 0 , f~ + ( 1 - 17~)~ f2 = 0 , (27a , b)

- - + g 0 , (27c)

again with the boundary conditions (25).

The th i rd  order problem (27) and (25) may be reduced to a second order

problem , throug h recognition of the existence of a f i rs t  integral of the system , as

follows. We mult ip ly (27a) by a facto r ~ and add the resulting relation to equa-

tion (27c). In this  way there follows f i r s t

(~ g)~ + 
~ ~~~~ ~ 4 (6 - £

3
)f 2 ] 0 . (28)

Having the factor in front of the bracket in (28) , we may now utilize equations

(27) without and Ip 1-term s , in order  to t r ans fo rm the contents of the bracket In

(28) advantageousl y. Using (27b) we obtain  + 4(6  - C )~z =
~~~~ 

- 4 (1  - c2 r =

- 10-



- l)f
~] .  Therewith, and with the fIrst two condition, in (25) we deduce

from (28) the first-Integral relation

4 g + f 2 + 3t,~Cr
Z
(~
Z _ l)ç=O . (29)

Having (29) we obtain a differential equation for g alone by first

combining (27a , b) and (29) In the fo rm

- 

~~~~~~~ + C 1-~ - o2,?L_J~fJ + ‘126
2g = 0 , (30)

and by setting in this 
~~ 

-~ g and f
~ 

= -g ’ ~~~ In the te rm s multiplied by tp~.
The resulting differential equation for g comes out to be

g” + a 2J(1 - ~2)C2 
- - 3C

2
)Jg =0 , (31)

with the two associated boundary conditions being , in accordance with (25) and

(27), the conditions g’(O) = g(1) = 0.

In order to solve the problem as stated , including first-order effect. in
and tp~, we use ordinary perturba tion expansions of the form

g = g
~ 

+ ?72g2 + ?1
~
g

~ 
+ .. .  , a~ =0~(l + c2t12 + ~~~ + . .. )  . (32)

It is evident , wIthout any calculations, that c2 1. In order to obtain the values

of 0~ and c~, we deduce from (31) the diffe rential equation,

i a~~~ g0 = 0 , g ’ + = (h(6) - c~6
2]g0 , (33)

where h(C) = 1(1 - 
~C2) with boundary conditions g (O) = g (0) = g0(1) = gt(l) = 0.

The well-known appropria te solution of the zeroth-orde r equation is

g = 
~~~~~~ h/ 4(3 a0c2 ) ,  where 00 ~ 4.0 126. Solution of the first-order equation

— 1 1—
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in ( 33) by the method of variation of parameters and satisfaction of the boun-

da ry conditions for g 1 then gives as the value of c~,

1 2  1 2 2

- 

!0
hg
0
d~ 

- ~ 
J’0[~_114(z °o6 d~ 

- ~ 1 285 (34- 

!~C
2g~dI 

- 2 
!~[6J 1/4(4a06

2)]2d6 
2 )

and therewith 0 
~ 

a0(l + 0. 
~~~ 

+ O. 64i
~

) whe re , it should be noted, the correct

numerical value of the coefficients of has first been obtained by Hodges and

Peters [7J, with the corresponding value of c
~. which follow s upon omission of

the doubly underlined terms in (27) and (28) beIng l .645~.

Effect of ra ns ye rse Shear Defo rmation on Late ral Buckling Load.

A determination of the effect of transve rse shear may be based on an exten-

slon of Kirchhoff’e equations for beams, In which the effect of tr ansverse

shea r deformations and and of a long itudinal  extensional strain is taken

in account of by replacing the three Kirchhoff moment equilibrium equations

(2) by equation. of the form [6],

M~ +x 1
M2 

- x2M 1 + y 1P 2 - y2P 1 + m ~ = 0  , (35a)

M + 
~
t ZMt - 

~t Mz + (1 + - + m 1 = 0 , (35b)

M~ - ~t 1M 1 + + (1 + V~)P2 - y~ P~ + m2 0 , (35c )

In conjunction with additional conetitutive equations Involving the quantities

In orde r to see the numerical significance of the improvement in f7), we note
that for a homogeneous narrow rectangular cross section , with Poissons ’s ratio
I’ = 1/3 we have , when 

~t = 0 1 , that 0 ~ I.0970o, whereas the corresponding
result without consideration of the doubl y underlined terms comes out to be
a

~~
I.hl50o.

-12-
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I
y and P. For wha t follow, we take these additional constitutive equations

In the Ion-i

= 0 , 
~ 1 = ~ lPI 12 = C2P2 . (36*, b, C)

With the above the equations correspondin g to equa tions (6) to (8) for the

unbuckled state remain as before except tha t equation (7a) I. replaced by

M 1 ~ P1 
.
~~

‘1P
~ ° (7a *)

At the same time equation (l0a) for the buckled state remains as before

while equations (lob , C) are replaced by

+ - X2M 1 + V 1P2 - V2P 1 = 0 , ( lOb *)

M~~
_ x

1Mt +~~1M 1 + P 2
_ V

2Pt = 0  . 
( 10c C)

We now non-dimensionalize , as in equatIon (12) and (23), and Introduc e

two transverse shear deformation pa rameters X~ and A
2 

of the form

C D  C D1
2

1 
~ 

2
2

2 A2 
(37)

L L

We then have that equations (13a , b) remain unchanged while equation (l3c)

Is rep laced by

m’ + (1 - 112l7~72 A1~ )P = 0 . (13c 5)

Of the three non-dimensionalized buckling equations (24) we have that

one of them. (24a) , remains unchanged while the remaining two are replaced by

- ( 1  _ 1p
2)mf 2

_ ( ~~~_ 1l2 X1)p g = 0  , (24b~)

-13-



+ ,
2~~ - fl~

)mf 1 + ~ - ~202
~~ q g  0 . (24c5)

In considering the problem of solving the system (13) and (24), subject

to the boundary conditions (14) and (25) we note the possibility that the trans-

ve rse shear parameters  A1 may ,  for sandwich-type beams, be quantities of

order of magnitude unity. In what follows we will limit ourselves to a solution

of the problem for the case tha t both and A2, as well as and ?~~ , are small

compa red to unity. We may then neglect products of these parameters and

evaluate the effect of nonvanishing A. as one which Is additive to the effects

of and 
~~ 

With this we have that equations (24a) and (24b*, CC) may be

simplified to

+ a
2f1 = 0 , f~ + Cf 2 - X2g 0 , f - a2Cft + g = 0 . (38)

We now obtain , as before , a f i rs t  Integral relation , ~g + f2 = 0, and

we use this relation to transform the second equation in (38) to a second-

order differential equation for g, of the form

2 2
g + 0 (6 + A2)g = 0 , (39)

again with the bounda ry conditions g ’ (0) = g(l) = 0.

We again expand the solution of this, in the form g = g0 + A2g~ + . . .

and cl2 = cT~~(I + cxA2 + ...), and then obtain in the same way as in going from

(31) to (34)

!~[a_ l/4(~ 
o c 2)] 

2
dC

C
A 

= - 

i~[cJ 114(4’0t2)J
2
d6 

~ -5.57 (40)

and therewith a reduction of the value of the buckling load parameter due to the

-J 4-

I a

A 

-

_ _  
_  

—



- -

effect of transverse shear deformability, In accordance with the relation 0

- 2•785 A2~• 
Given a beam with homogeneous narrow rectangular cross

section of thickness 2c the value of A
2 comes out to be (2E/5G)(c

2/L2).

For a narrow rectangular sandwich cros s section . wit h shea r resistant core

of thickneis 2c enclosed between two face sheets of thickness t , the pa rameter

A2 
is given by the expression (Ef /G )(ct/L 2), with the evident pos sibility of a

significant A2-effect for sufficiently large values of Ef I C .
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Cantilever , Lateral buckling , Secondary effects, Perturbation expansions ,
Transverse shear corrections .

SO. A5S~ SAC ? (C.willrn.. a., ,..r.,.. aId. If ,..c.. ~ wy nnd Ids.,Itt~- bp block ,,,..e.,)
The classical problem of lateral buckling of cantilever beams with transverse cml
load is re-examined , as an example of a problem fully governed by the intrinsic
equations of Kircbhoff’s curved beam theory. - ft is shown that a suitable non-
dimensioealization of the differential equations of the problem loads to a stra ish

A forward perturbation solution , with leading and second-order teems of the .xpansio
having well-defined differences in physical significance . - The equations of a
recent extension of Kirchhoff ’ s theory , which take account of transverse shear def r-

used for the result for the influence

DO ~~~~~~ 14/3 10,11011 or I ~ 0V (I’. IS Or’ ;OLETE

~LCU’IS TV  C.I.A%~ II ICAI l~) I  ..l till! . t A (.L ,4l.pn I~as. I ,.I.,.l 1

~~~~~~~~ 1

_ _ _  

• 

_ _ _  ~
‘ 

~~~~~


